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ABSTRACT
The estimation of urban arterial travel time distribution (TTD) is critical to help implement
Intelligent Transportation Systems (ITS) and provide travelers with timely and reliable route
guidance. The state-of-practice procedure for arterial TTD estimation commonly assumes
that the path travel time follows a certain distribution without considering link correlations.
However, this approach appears inappropriate since travel times on successive links are
essentially dependent along signalized arterials. In this study, a copula-based approach is
proposed to model arterial TTD by accounting for spatial link correlations. First, TTDs on
consecutive links along one arterial in Hangzhou, China are investigated. Link TTDs are esti-
mated through the nonparametric kernel smoothing method. Link correlations are analyzed
in both unfavorable and favorable coordination cases. Then, Gaussian copula models are
introduced to model the dependent structure between link TTDs. The parameters of
Gaussian copula are obtained by Maximum-Likelihood Estimation (MLE). Next, path TTDs
covering consecutive links are estimated based on the estimated copula models. The results
demonstrate the advantage of the proposed copula-based approach, compared with the
convolution without capturing link correlations and the empirical distribution fitting meth-
ods in both unfavorable and favorable coordination cases.
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Introduction

Travel time distribution (TTD) and travel time reli-
ability (TTR) serve as significant measures for evaluat-
ing the operational efficiency of transportation
facilities (Etienne, Nicolas, & Ludovic, 2015; Ji et al.,
2018; Zhang, Wang, Chen, He, & Yu, 2017), compar-
ing different traffic control and management strategies
(Chen, Sun, & Qi, 2017a; Ramezani & Geroliminis,
2015) and delivering travelers about timely and reli-
able route information (Zeng, Miwa, Wakita, &
Morikawa, 2015). The national SHRP2 Reliability
research (SHRP2 Report S2-L02-RR-2, 2014) defined
TTR as consistency of travel time over time. It has
been well noted that the analysis of TTR is equally
important as the commonly adopted average travel
time (Bates, Polak, Jones, & Cook, 2001).

The interrupted flow on arterials makes TTD esti-
mation more challenging than uninterrupted flow on
freeway and expressway facilities (Chen, Tong, Lu, &
Wang, 2018; Tang, Liu, Zou, Zhang, & Wang, 2017).
Under complicated interactions of traffic regimes and

signal control, arterial travel times exhibit distinct
shapes of distributions under different traffic charac-
teristics. The state-of-practice approaches for arterial
TTD estimation can be generally classified into two
categories based on available data sources (Rakha, El-
Shawarby, Arafeh, & Dion, 2006). Based on path-level
data sources, e.g., using automatic license plate recog-
nition and automatic vehicle identification (AVI),
path TTD can be directly obtained and estimated by
assuming certain unimodal distributions, e.g., Normal
and Lognormal (Emam & Ai-Deek, 2006; Susilawati,
Taylor, & Somenahalli, 2013; Uno, Kurauchi, Tamura,
& Iida, 2009), or multimodal distributions, e.g.,
Gaussian Mixture distribution (Chen, Yin, & Sun,
2014; Feng, Hourdos, & Davis, 2012; Guo, Rakha, &
Park, 2010; Kazagli & Koutsopoulos, 2013). However,
due to the high labor and operation costs, such data
sources are scarce and usually suffer from undesirable
accuracy (Feng, Sun, & Chen, 2015). In general, only
limited arterials can be detected, which may some-
times fail to reflect the path TTD of overall traffic in
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a network-wide scale. The alternative approach is to
derive path TTD based on link-level data sources, e.g.,
probe vehicles with GPS devices, which enables to
cover a wider area than stationary equipment. The
link TTDs are first estimated and then assembled to a
joint distribution (e.g., Normal) by assuming the inde-
pendence between individual link TTDs (Dailey, Wall,
Maclean, & Cathey, 2000). However, such approach
appears inappropriate since travel times on successive
links are essentially dependent along signalized arteri-
als. For example, when one link becomes congested,
the adjacent links also get affected by this congestion.
As pointed by Iida (1999), mutual relationships or
dependencies among links should not be overlooked
in reliability analysis.

To address this problem, this study adopts the cop-
ula model in econometrics (Trivedi & Zimmer, 2006),
to estimate path TTD given a link set by accounting
for spatial correlation between link travel times.
Compared to multivariate distributions, one distinct
feature of the copula model is that the dependence
structure is unaffected by the types of marginal distri-
butions, which offers greater flexibility in correlating
individual link TTDs. Note that the temporal correl-
ation between link travel time and link arrival time is
not studied here but was presented in an earlier study
(Chen, Liu, Qi, & Wang, 2013). The effect of signal
coordination on the form of link and path TTD is
also scrutinized in this study. It is hoped that these
efforts may help provide practical insights into how
link-level data sources can be fully utilized for path
TTD estimation on signalized arterials.

The reminder of this article is organized as follows.
A literature review of path travel time estimation is
first presented, followed by a brief description of the
copula theory and the estimation procedure for copula
models. Then, a case study is conducted at one arter-
ial in Hangzhou City, China to illustrate the applica-
tion of the proposed methodology. The spatial
correlations between link travel times are statistically
examined and path TTDs are estimated by copula
methods under both unfavorable and favorable signal
coordination cases. The results are compared with the
estimates without considering link correlations as well
as empirical bimodal or multimodal distributions. The
last section draws conclusions and provides recom-
mendations for future work.

Literature review

Travel time along signalized arterials has been exten-
sively studied in the literature. The vast majority of

the related work has focused on the estimation of the
average travel time. The representative studies can be
referred to Highway Capacity Manual (2010),
Skabardonis and Geroliminis (2005), Skabardonis and
Geroliminis (2008), and Liu and Ma (2009). However,
less work has been done to quantify the variability of
either link-level or path-level TTD and explore the
interdependence between link TTDs along arterials. A
thorough review is provided below.

Link-level TTD can capture the nature of inter-
rupted flow under traffic signal control and has wide
applications in practice. Ji and Michael Zhang (2013)
used bus probe data to estimate travel times on urban
street and identified bimodal TTD at link-level. The
two modes relates to the travels with and without
delays, respectively. Then, a mixture model was devel-
oped to characterize such bimodal TTD. Zheng and
van Zuylen (2010) analyzed the delay distribution as
the main component of link TTD, and built a prob-
abilistic model to estimate delay distribution by
accounting for stochastic arrivals and departures at
signalized intersections. Through simulating the cyclic
evolution of delay distribution, the temporal correl-
ation between vehicle arrival time and link travel time
was illustrated and demonstrated.

When planning trips, travelers care more about
path-level TTD than link-level. A common approach
to analyze path-level TTD is using statistical models
to fit real travel time observations. Early studies
resorted to unimodal distributions (e.g., Normal,
Lognormal, Gamma, Weibull, and exponential distri-
bution, etc.). One can refer to the studies by Emam
and Ai-Deek (2006), Uno et al. (2009), and Susilawati
et al. (2013). On the other hand, it has been argued
that unimodal distribution may not well represent the
variation of path travel times. For instance, travel
times under free-flow and congested conditions can
be significantly different. Increasing researchers tend
to use multimodal or mixture models to characterize
path TTD. Guo et al. (2010) and Feng et al. (2012)
used a mixture of Gaussian distributions to estimate
path TTD, while Kazagli and Koutsopoulos (2013)
used a mixture of lognormal distributions. Chen et al.
(2014) further used a finite mixture of regression
model with varying mixing probabilities to explore
path TTD under the impact of signal control. Such
approach helps establish a connection between TTDs
and underlying traffic states, through which the
detailed analysis of the probabilities of each state and
an overall better fitting can be achieved. However, as
the basic input of the method, the path-level travel
time data are not often available in urban network,
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which restrains the applicability of the distribution fit-
ting approach. In real, a path usually includes multiple
links and there exist a series of paths between one
Origin-Destination (OD) pair. Considering that the
link-level travel time data are commonly available,
it will be more feasible to estimate path TTD
based on individual link TTDs (Chen, Yu, Chen, &
Wang, 2017b).

In most studies on path travel time estimation, the
assumption of the independence of individual link
travel times is made (Iida, 1999). Such assumption
may be generally accepted when only the average path
travel time is interested. However, when one is inter-
ested in TTD estimation, the assumption of link inde-
pendence appears not appropriate any more. He, Liu,
Kornhauser, and Ran (2002) stated that the assump-
tions made for long-term (such as peak hours, non-
peak hours, daily, and seasonal) TTD estimation, i.e.,
(1) travel times on all separate route sections are inde-
pendent and (2) trip times per unit distance on all
sections are identically distributed, may not be valid
for the short-term estimation of route TTD. Dailey
et al. (2000) and Pattanamekar, Park, Rilett, Lee, and
Lee (2003) suggested using joint probability density
function to model the correlated link TTD.
Geroliminis and Skabardonis (2006) calculated path
travel time variance under the assumption of linear
correlations between consecutive link travel times. As
an extended work, Ramezani and Geroliminis (2012)
used Markov chains to estimate path TTD through
the integration of correlated link TTDs. The product
of the sequence of pair-wise Markov matrixes was cal-
culated by assuming the transitions between different
link pairs are conditionally independent. However, the
proposed approach was data intensive and the effect
of signal timing and coordination has not been ana-
lyzed, which is supposed to have direct impact on
link-level TTD along arterials.

In summary, the characteristics of link TTD under
different signal control strategies needs further investi-
gation. The correlation between successive link TTDs
on arterials has not been explicitly analyzed.
Furthermore, based on individual link TTDs, how to
characterize path TTD by accounting for their spatial
correlation remains a critical task. Thus, copula mod-
els, which have been recognized and employed in the
econometrics field (Trivedi & Zimmer, 2006) and
recently are popular in transportation research (Bhat
& Eluru, 2009; Chen et al., 2017b; Zou & Zhang,
2016), are introduced in this study to interpret the
dependent structure of link TTDs and predict empir-
ical TTD for a given path. In the next section, we

provide a brief description of the copula theory, the
Gaussian Copula model adopted in this study and its
estimation method.

Methodology

As stated in Ramezani and Geroliminis (2012), given
individual link TTDs, a simple model for path TTD
estimation is to aggregate them independently.
Assume a path consisted of K links, the path TTD can
be computed as follows:

TTDK ¼ TTD1 � TTD2 � :::� TTDK (1)

TTDi�TTDj
� �

tð Þ¢
ð1
�1

TTDi sð ÞTTDj t� sð Þds (2)

where the (�) mathematical operator represents con-
volution and the left term in Eq.(2) is the probability
density over time t for two links (i, j¼1, 2,… , k)
given both TTDs a priori. The convolution method
considers the independence of link TTDs and ignores
the spatiotemporal correlation that exists between suc-
cessive links.

To incorporate the correlation of link TTDs into
path TTD estimation, a copula approach, which has
been used for modeling multivariate distributions
among random variables with pre-specified marginal
distributions (Sklar, 1973), is adopted in this study.
The copula approach enables a flexible way to charac-
terize nonlinear dependence among consecutive links
travel times regardless of their marginal distributions,
i.e., the dependence structure is not influenced by the
assumed marginal distributions. It will provide flexi-
bility in correlating individual link travel times since
they may not even have the same marginal distribu-
tions under different traffic flow and signal control
strategies. The basic theorem on multivariate copulas
is provided below.

Copulas

According to Sklar’s theorem (Sklar, 1973), for an
n-variate distribution Fðx1; x2; :::; xnÞ with marginal
distributions F1ðx1Þ; F2ðx2Þ; :::; Fnðxn), there exists
an n-dimensional copula C such that for all
x1; x2; :::; xn:

F x1; x2; :::; xnð Þ ¼ C F1 x1Þ; F2 x2ð Þ; :::; Fn xnð Þ� ��
(3)

If marginal distributions are all continuous, then C
is unique. Equation (3) essentially states that the
multivariate distribution F of random variables
x1; x2; :::; xn can be expressed in terms of a copula
function C and their marginal distributions. As a
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general case, the bivariate distribution of two random
variables x1 and x2 can be given by:

F x1; x2ð Þ ¼ C F1 x1ð Þ; F2 x2ð Þ; h� � ¼ C u1; u2; hð Þ (4)

where Fðx1; x2Þ is the joint distribution of x1 and x2;
u1 ¼ F1ðx1Þ and u2 ¼ F2ðx2Þ are the corresponding
marginal distributions of x1 and x2, respectively;
Cðu1; u2; hÞ is the copula function; h is the copula par-
ameter describing the dependency between x1 and x2,
which can be determined by Pearson’s linear correl-
ation coefficient, or rank correlation coefficient, e.g.,
the Spearman and Kendall correlation coefficients, or
tail dependence, which relates to the amount of
dependence at the upper-quadrant tail or lower-
quadrant tail of a bivariate distribution.

A set of copula types can be found in Trivedi and
Zimmer (2006) to describe the dependence between
random variables, including the Gaussian copula, the
FGM copula, and the Archimedean class of copulas.
In this study, as an initial effort to employ copula
methods, only Gaussian copula is introduced and
utilized to model the dependent structure between
individual link TTDs.

Gaussian copula

As the most frequently used one, the Gaussian copula
is an elliptical and symmetric copula, since it is simply
the copula of the elliptical bivariate normal distribu-
tion. Using a Gaussian copula is essentially equivalent
to a bivariate normal distribution if and only if the
two marginal distributions are Gaussian and the
dependent structure between them is a Gaussian cop-
ula function. The two-dimensional Gaussian copula
can be defined as

C u1; u2; hð Þ ¼ U2 U�1 u1ð Þ;U�1 u2ð Þ; h
� �

(5)

where U�1 denotes the inverse cumulative distribu-
tion function (CDF) of a standard normal, U2ð:; :; hÞ
is the bivariate CDF with Pearson’s correlation par-
ameter h ð�1 � h � 1Þ. Note u1 and u2 can be any
arbitrary marginal CDF, either parametric or non-
parametric, which evidently distinguishes the
Gaussian copula from the joint normal CDF. The
conditional distribution of the Gaussian copula can
be expressed as

@

@u1
C u1; u2; hð Þ ¼ U

U�1 u2ð Þ�hU�1 u1ð Þffiffiffiffiffiffiffiffiffiffiffi
1�h2

p
 !

(6)

@

@u2
C u1; u2; hð Þ ¼ U

U�1 u1ð Þ�hU�1 u2ð Þffiffiffiffiffiffiffiffiffiffiffi
1�h2

p
 !

(7)

The copula density is given by

c u1; u2; hð Þ ¼ @2

@u1@u2
C u1; u2; hð Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1�h2

p � exp
2hU�1 u1ð ÞU�1 u2ð Þ�h2 U�1 u1ð Þ2 þ U�1 u2ð Þ2

� �
2 1� h2ð Þ

0
@

1
A
(8)

In terms of its copula density, the 2D Gaussian
copula can be written as

C u1; u2; hð Þ ¼
ðu1
0

ðu2
0
c s; t; hð Þdsdt (9)

Besides, one typical property of the Gaussian cop-
ula about its tail dependence is asymptotic independ-
ence. That is, regardless of the level of correlation
assumed, upper-quadrant tail or lower-quadrant tail
events appear to be independent in each margin.
Thus, Gaussian copula is essentially unable to capture
the dependence in the tails as compared to the other
copulas, e.g., Clayton is radially symmetric with strong
left tail dependence and weak right tail dependence
and its right tail dependence goes to zero at right
extreme. To explore other types of copula functions
with tail dependence will be left as a future work.

Two-stage estimation for copula models

For copula models, because the dependence modeled
through the copula is separated from the marginal
distributions, Maximum Likelihood Estimation (MLE)
method is utilized to estimate the marginal distribu-
tions and the copula model in two stages. It is import-
ant from a practical point of view because numerical
optimization depends on a good starting point if the
dimension of the parameter vector is large.

Estimation of marginal distributions
Both parametric and nonparametric estimators can be
used to characterize the marginal distribution of link
travel times. Parametric estimators include Normal,
Lognormal, Gamma, and Weibull, etc. Nonparametric
estimators include a kernel smoothing estimator with
a Gaussian kernel. The density at x by the kernel
smoothing method is given by

f̂ h xð Þ ¼ 1
nh

Xn
i¼1

K
x�Xi

h

� �
(10)

where K is the kernel function, h is a smoothing par-
ameter for the bandwidth and Xi represents the
observed data. The selection of h needs to consider
the bias of the estimation and its variance. In this
study, Gaussian kernel is selected and the bandwidth
h chosen in light of the optimality rules in Bowman
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and Azzalini (1997), which are also implemented
in Matlab.

Estimation of the copula
After estimation of marginal distributions, ~nj via a
univariate maximum likelihood for j ¼ 1; 2; :::; n as
shown in Eq. (3) can be obtained. Then, the copula
parameter h describing the dependency between the
travel times of different links is estimated by maximiz-
ing the likelihood

LC ¼
Xn
i¼1

logc F1 x1; ~n1Þ; F2 x2; ~n2ð Þ; :::;��
Fn xn; ~nnð Þ; hÞ (11)

Note that in the process of estimation, each mar-
ginal link TTDs are transformed to values between 0
and 1. Based on uniformly distributed link TTDs, the
study of dependence is therefore not subject to any
difference in marginal link TTDs, which helps to
achieve stable estimation of the dependent structure.
Then, path TTD can be generated based on the esti-
mated marginal link TTDs and copula model.

Case study

The proposed methodology was evaluated for the
through movement of one arterial in Hangzhou,
China. Following presented is the study site descrip-
tion and data preparation process; based on investiga-
tion of link TTDs, the Gaussian copula model was
constructed for path TTD estimation under both
unfavorable and favorable coordination cases; last, the
comparison was made for path TTD estimates by the
copula model, the convolution, and the empirical dis-
tribution fitting approach.

Study site description and data preparation

The study site is 1.7 km long stretch of a major urban
arterial in Hangzhou, China. The study section con-
sists of four signalized intersections with three links,
as illustrated in Figure 1. There are two through lanes
on each direction of the north-south arterial, with
additional turning lanes at intersection approaches,
and the speed limit is 40 km/h. Traffic signals are all
four-phase operating with cycle lengths ranging from
170 to 180 s.

In addition to the geometric data available, a field
study was conducted from 7 am to 10 am on 1 June
2007, to obtain comprehensive through movement
counts, turning movement counts, and signal timing
plans. The study period covers time-varying traffic
flow patterns, e.g., a short low flow off-peak pattern, a
longer high flow peak pattern, and a short mid-flow
post-peak pattern. The field observation showed
unfavorable signal progression along the arterial, espe-
cially for link 1. Due to platoon dispersion under long
link spacing and the impact of mid-link traffic (from
Zhaohui Road, as shown in Figure 1), travel times on
link 1 showed significant fluctuation and less correl-
ation with nearby links. Thus, based on the signal
control plan at Intersection 2 downstream of link 1,
signal timings were adjusted for Intersections 3 and 4
to enable a better coordination favoring the south-
bound direction. The traffic flow data (through and
turning movement every 15min) and signal timing
data (both unfavorable signal coordination and the
improved one) were coded into the VISSIM micro-
scopic simulation model (PTV, 2008).

To ensure that the VISSIM model will correctly
represent traffic performance at the site, calibration
was conducted and VISSIM model parameters were
adjusted to reproduce local driver behavior and traffic
conditions. Considering that capacity has a significant
effect on the system performance, i.e., delay and
queues, an initial calibration was performed to

Figure 1. Study site: arterial schematic in Hangzhou
City, China.
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identify the values for the capacity adjustment param-
eters that cause the model to best reproduce observed
traffic capacities in the field. First, based on field
measurements and model estimates of capacity, a
global calibration was performed to identify the
appropriate value of the capacity parameters. Then,
link-specific capacity parameters were selected and
adjusted to fine-tune the model so that it more
precisely matches the field-measured capacities.

According to field investigation, the key capacity
parameters in VISSIM were identified as: (1) in
Wiedemann 74 car following model: Average standstill
distance, Additive part of safety distance,
Multiplicative part of safety distance; and (2) in lane
changing model: Waiting time before diffusion. By

referring to the potential range of the identified cap-
acity parameters in practice, Latin Orthogonal Design
was employed to fine-tune the optimal combination
of calibration parameters for minimizing the squared
error between the field observations and the simula-
tion model. Last, the overall traffic performance pre-
dicted by the simulation model was compared to the
field measurements of travel time, queue lengths, and
the duration of queuing. The results of calibrated
parameters are shown in Table 1.

Based on the calibrated simulation model, time-
space diagrams with vehicle trajectories were made for
both unfavorable and favorable coordination cases, as
shown in Figure 2. The diagrams help illustrate the
site congestion. It can be found that after signal

Table 1. The default and calibrated values of the identified capacity parameters in VISSIM.
Parameter Average standstill distance Additive part of safety distance Multiplicative part of safety distance Waiting time before diffusion

Default value 2 m 2 m 2 m 60 s
Calibrated value 2.5 m 1.5 m 3 m 60 s

Figure 2. Time-space diagrams with vehicle trajectories during 7 am–8 am of the analysis period. (a) Unfavorable coordination
case. (b) Favorable coordination case.
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adjustment between intersections the traffic flow on
the arterial become smoother with most of the
vehicles traveling within the green band. Of particular
interest for this study is the difference of link TTDs
correlation under unfavorable and favorable signal
coordination, and whether the proposed copula
approach can capture such difference in path
TTD estimation.

Before estimating arterial path travel time, the def-
inition of an individual link needs to be made clear.
Generally, a link should be defined such that consecu-
tive links are contiguous over a section of the road
and the link travel time includes the intersection delay
(Bhaskar, Chung, & Dumont, 2009). Only in this way
can travel time estimates from such links be used to
obtain path travel time estimates, where a path con-
sists of multiple links. Thus, a link in this study is
defined from upstream stop-bar to downstream stop-
bar, as illustrated in Figure 3. Accordingly, the lengths
of three links are 764, 433, and 507 m, respectively, as
in Figure 1. Link travel time is defined as the travel
time from the moment the vehicle enters the

upstream of the link to the moment it leaves the
downstream intersection. The link travel time is then
calculated as

TTi ¼ t0i � ti (12)

Based on the definition of link travel time above,
the simulation model was applied to estimate the
TTDs of links 2 and 3 in southbound direction with a
3-hour simulation.

Investigation of link TTD

First, link TTDs were investigated by analyzing the
travel times of all vehicles crossing successive links 2
and 3 during the evaluation period. Figure 4 gives a
scatter diagram of joint TTD, with each dot represent-
ing the travel time of one vehicle in each of the two
links. The shape of individual link TTDs was esti-
mated by the kernel smoothing method, as in Eq.
(10). Assumed that the feature of link travel time cor-
relation have significant difference due to signal
coordination, we analyzed the performance of the pro-
posed model for unfavorable and favorable signal
coordination cases, respectively.

In unfavorable coordination case, as shown in
Figure 4(a), the values of individual travel times for
each link scatter in a wide range of the joint distribu-
tion space. It is hard to identify any correlation or
dependence pattern between scattered travel times
along successive links. While in favorable coordination
case, as shown in Figure 4(b), four travel time states

link i
ti'ti

Figure 3. Definition of link travel time.

Figure 4. TTDs of successive links 2 and 3. (a) Unfavorable coordination case. (b) Favorable coordination case.
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and corresponding correlation patterns can be identi-
fied for successive link travel times. The four travel
time states include fast in both links, fast in link 2 but
slow in link 3, slow in link 2 but fast in link 3, and
slow in both links, which are also found by Ramezani
and Geroliminis (2012). The state boundaries are
quite clear compared to unfavorable coordination case
and the link TTDs show apparent bimodal distribu-
tions implying two significantly different states. On
the other hand, it shows the clear positive correlation
(points along 45 degree diagonal line) and negative
correlation (points along �45 degree diagonal line) in
the favorable coordination case. It can be explained by
the green-wave control such that some of the vehicles
go through the successive links without stop (points
in lower left) while some have to stop once (points in
upper left and lower right). Notice that a desirable
green-wave control should avoid the link travel times
locating in the upper right side of Figure 4(b).

Detailed analyses of individual link travel times are
given in Table 2. As shown, almost both link travel
times first increase during the morning peak period,
i.e., 7 am–9 am, then decrease during the mid-flow
post-peak periods, i.e., 9 am–10 am, except for link 3
in unfavorable coordination case. It is worth noticing
that the overall average travel time on link 2 decreases
significantly (from 122.97 s to 76.17 s) only at a rela-
tively small cost of travel time increment (from
124.65 s to 131.66s) on link 3 if we improve the signal
timing strategy from unfavorable coordination to

favorable. In addition, a larger variability of link travel
times, indicated by coefficient of variation, is found
for favorable coordination case. Note that signal
coordination favors the mean value of link or path
travel times, while the variability accordingly increases
to some extent with the link TTDs being divided into
clear-cut bimodal distributions, as illustrated in
Figure 4(b).

Furthermore, analyses of link travel time correl-
ation are given in Table 3. The Pearson correlation
coefficients were computed to indicate the correlation
for the pair of the successive links based on the link
travel time of each vehicle. The results in Table 3
show the correlation between link travel times in both
unfavorable and favorable coordination cases.
Interestingly, it is found that the link travel time cor-
relation is positive in most of the time periods (except
for the period 9 am–10 am) for the unfavorable
coordination case, while it is negative in all the time
periods for the favorable case. This phenomenon is
likely resulted from the integrated impact of traffic
demand and signal control. For the unfavorable
coordination case, the change of traffic demand may
have a greater impact on the link correlation, while
the signal control has a relatively smaller impact.
Thus, the link travel time correlation naturally shows
a positive feature. For example, as the traffic flow
increases, the travel time for link 2 and link 3
increases simultaneously. However, this is not true in
the favorable coordination case, because the signal

Table 2. Link travel time analysis.
Link No. Time period No. of samples Mean Standard deviation Coefficient of variation

Unfavorable coordination case 2 7 am–8 am 597 110.41 47.00 0.43
8 am–9 am 705 139.56 49.75 0.36
9 am–10 am 685 116.84 38.46 0.33
Overall 1987 122.97 47.01 0.38

3 7 am–8 am 597 95.41 11.66 0.12
8 am–9 am 705 132.45 12.67 0.10
9 am–10 am 685 142.12 41.77 0.29
Overall 1987 124.65 32.91 0.26

Favorable coordination case 2 7 am–8 am 598 67.50 37.98 0.56
8 am–9 am 787 74.33 45.30 0.61
9 am–10 am 648 86.41 52.88 0.61
Overall 2033 76.17 46.55 0.61

3 7 am–8 am 598 122.86 64.93 0.53
8 am–9 am 787 141.53 66.45 0.47
9 am–10 am 648 127.79 64.26 0.50
Overall 2033 131.66 65.81 0.50

Table 3. Correlation between travel times of links 2 and 3.
Time period No. of samples Mean Covariance Correlation coefficient

Unfavorable coordination case 7 am–8 am 597 (110.41, 95.41) 179.053 0.13
8 am–9 am 705 (139.56, 132.45) 218.90 0.15
9 am–10 am 685 (116.84, 142.12) �216.96 �0.14

Favorable coordination case 7 am–8 am 598 (67.50, 122.86) �219.97 �0.09
8 am–9 am 787 (74.33, 141.53) �920.83 �0.31
9 am–10 am 648 (86.41, 127.79) �1192.92 �0.35
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control, rather than traffic flow, may have a leading
impact on link correlation, which is shown in
Figure 4.

Construction of Gaussian copula model

Using the two-stage estimator introduced in the last
section, marginal link TTDs were first estimated by
the kernel smoothing method, as illustrated in Figure
4, and then Gaussian copula models were constructed
for unfavorable and favorable coordination cases,
respectively. The Gaussian copula parameters h are
estimated to be 0.103 and 0.211 for both cases. The
rank correlation coefficients, i.e., the Spearman and
Kendall correlation coefficients, are estimated to be
0.066 and 0.099 for unfavorable case, and 0.135 and
0.201 for favorable case. Those indices imply the dif-
ference of dependence between travel times of succes-
sive links under the impact of different signal
control strategies.

Based on the estimated copula parameters, copula
densities for the two cases are shown in Figure 5. It is
evident in Figure 5(a) that less dependence can be
identified for successive link travel times in the
unfavorable coordination case, whereas, the copula
density in Figure 5(b) shows an increasing depend-
ence in the favorable case. Note that a certain lower
tail dependence and upper tail dependence can be
identified, i.e., near (0,0) and (1,1), implying that the
dependence between low travel time observations and
between high travel time observations of successive
links needs additional attention, especially in favorable
coordination case. In reality, travelers are more inter-
ested in the co-occurrence of high or low travel time
on the focused consecutive links. In copula theory
(Trivedi & Zimmer, 2006), different copula models

yield different upper or lower tail dependence meas-
ures, which may describe different likelihoods of expe-
riencing high or low travel time on the unknown link
given the same experience on the known link.
However, given the relative ease of construction and
estimation, the Gaussian copula method is adopted in
this study as an initial effort but can hardly capture
such tail dependence.

Estimation of path TTD

Based on the constructed Gaussian copula models,
path TTDs were estimated for both unfavorable and
favorable coordination cases. Using the experienced
travel times on upstream link 2 as an input, the mod-
els predict the travel times on downstream link 3 by
considering the dependence between them. The PDF
and CDF of real path TTD, the results by the copula
method and the convoluted estimation by Eq. (2) are
shown in Figure 6. For unfavorable coordination case,
path TTD on successive links 2–3 shows a unimodal
distribution as in Figure 6(a). The estimation of TTD
by the copula method is slightly better than the con-
voluted one. A possible reason is that the correlation
between link TTDs is not significant in unfavorable
coordination case. In such situation, the copula
method considering the correlation between link
TTDs has no apparent superiority over the convolu-
tion method without capturing the link correlation.
While for favorable coordination case, path TTD
shows apparently bimodal distributions. The TTD by
the copula method is close to the real one and more
accurate compared to the convoluted estimation. It
implies with the increasing correlation between link
TTDs under signal coordination, the superiority of
the copula method over convolution becomes

Figure 5. Estimated copula density. (a) Unfavorable coordination case. (b) Favorable coordination case.
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Figure 6. Path TTD estimation. (a) PDF in the unfavorable coordination case. (b) PDF in the favorable coordination case. (c) CDF in
the unfavorable coordination case. (d) CDF in the favorable coordination case.
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significant. Note that five samples with extreme path
travel times, as illustrated in Figure 4(b) correspond-
ing to slow traffic states in both links, lead to an over-
estimation of TTD in such boundaries by both
convolution and copula methods. The potential rea-
sons are provided below. For convolution method, it
is prone to overfitting problem given scarce data
points in certain intervals of sample distributions. For
the copula method, this study adopts the Gaussian
Copula one, which assumes asymptotic independence
in both lower tail and upper tail, i.e., when travel
times on two links which depend on each other
through Gaussian Copula both have extreme low or
high values, these extreme values tend to distribute
independently. However, the five samples with
extreme high path travel times, corresponding to the
upper tail, are apparently not independent. Thus,
the adopted Gaussian copula method fails to consider
the joint distribution in the tails. Other types of copulas,
e.g., Gumbel copula and BB1 copula capturing the tail
dependence (Trivedi & Zimmer, 2006), are supposed to
be tested for path TTD estimation in future work.

For more comprehensive comparison, the
Kolmogorov–Smirnov statistic is introduced to quan-
tify the maximum distance between CDFs of real
TTD with the estimated ones by Gaussian copula,
convolution, unimodal distributions (including
Normal, Lognormal, Gumbel) and bimodal Gaussian
Mixture distribution (with two components). The
results are shown in Table 4. It can be seen that the
advantage of the Gaussian copula method over
the convolution and the distribution fitting methods
are promising in both unfavorable and favorable
coordination cases, though the Gaussian Mixture
method performs slightly better than the Gaussian
copula method in the unfavorable coordination case,
with a K-S statistics of 0.024 versus 0.050). In the
favorable coordination case, the Gaussian Mixture
method has a slightly larger K-S statistics, i.e., 0.095,
over Gaussian Copula, i.e., 0.081. Figure 6(b) indicates
that there may exist the additional component (>2) of
the path TTD, which cannot be adequately explained

by the assumed bimodal Gaussian mixture model.
Worth noticing is that the Gaussian copula method
utilizes the link-level TTDs to estimate the unknown
path-level TTD, while the distribution fitting methods
attempt to approximate the known path-level TTD
(unimodal or bimodal as in both cases). The copula
approach demonstrates to have statistical superiority
and practical value in real application.

Conclusions and future work

This article introduces a copula-based approach to
characterize the dependent structure between links
along arterials and then aggregate the individual link
TTDs to estimate path TTD by accounting for spatial
link correlation. To validate the copula-based model
in an ideal tested scenario, VISSIM simulation with
calibration is utilized to generate travel time data on
one arterial in Hangzhou, China. Link-level TTD and
their correlations are analyzed in both unfavorable
and favorable coordination cases. Path TTD estimates
by the copula model are compared to those by the
convolution and the empirical distribution fitting
approach. The main findings are summarized below:

1. Link-level TTDs can hardly be represented by uni-
modal distributions in both unfavorable and favor-
able coordination cases. Instead, link TTDs show
apparent bimodal distributions implying two sig-
nificantly different states. Especially in favorable
coordination case, link TTDs are divided into clear-
cut bimodal distributions, implying the significant
impact of signal control upon link travel times.

2. Link travel times are found spatially dependent.
Small correlation or dependence pattern is identi-
fied between scattered travel times along succes-
sive links in unfavorable coordination case. While
in favorable case, TTDs of successive links under
signal coordination show the clear positive correl-
ation (points along 45 degree diagonal line) and
negative correlation (points along �45 degree
diagonal line). It implies that path TTD estima-
tion needs to carefully consider such spatial link
correlation, for which the copula method can be
an appropriate approach.

3. For path TTD estimation, the copula-based
approach has no apparent superiority over the
convolution method in unfavorable coordination
case, due to weak correlation between links.
While for favorable coordination case, with the
increasing correlation between links, path TTD
estimates by the copula method are close to the

Table 4. Kolmogorov–Smirnov statistics of real TTD with
estimated TTDs.

Type of distribution

Unfavorable
coordination

case

Favorable
coordination

case

Gaussian Copula 0.050 0.081
Convolution 0.066 0.117
Normal 0.068 0.254
Lognormal 0.086 0.282
Gumbel 0.082 0.271
Gaussian Mixture

(with 2 components)
0.024 0.095
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real ones and more accurate compared to the
convolution and the empirical distribution fit-
ting approach.

It is noteworthy that in this study we only analyzed
the correlation between two neighboring links TTD
under signal control. The results and conclusions
draw above may be limited in scope. To extend initial
findings, it will be necessary to analyze and model the
path TTD consisting of increasing number of links.
Other types of copula functions with different proper-
ties are supposed to be tested and compared for good-
ness-of-fit statistics (Trivedi & Zimmer, 2006). For
instance, a Clayton copula is able to capture lower tail
dependence; a Gumbel copula is able to capture upper
tail dependency; a BB1 copula may capture both lower
and upper tail dependence in the joint distribution of
successive link travel times, of which traveler may be
more concerned. Next, it remains considerable work
to quantify the spatial link correlation under different
signal control strategies and traffic conditions. The
signal timing, offset setting, different levels of mis-
match at upstream and down signals need to be
inspected in detail. Besides, Zou, Yang, Zhang, Tang,
and Zhang (2017) implied that when the traffic is
characterized by heterogeneity, i.e., the observed link
travel time data are generated from different sub-pop-
ulations, the correlation value between consecutive
links will vary depending on the traffic conditions.
One potential approach will be to explore the applic-
ability of the finite mixtures of multivariate distribu-
tions to characterize the heterogeneity existing in link
travel time data. Last but not least, to improve the
applicability of the proposed method in field imple-
mentation, experiments with real data, e.g., GPS data
by probe vehicles (which need to be decomposed
from path-level to link-level), will help examine the
practical estimation of link travel times. These are
directions for our future research.
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